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Lattice and Continuum Wavelets and 
the Block Renormalization Group 

Michael  O'Carroll  1 
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We obtain a resolution of the identity operator, for functions on a lattice eZ d, 
which is derived from the block renormalization group. We use eigenfunctions 
of the terms of the decomposition to form a basis for 12(eZ d) and show how the 
basis is generated from lattice wavelets. The lattice spacing e is taken to zero 
and continuum wavelets are obtained. 
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Recently wavelets have played an impor tan t  role in mathematical  physics 
and engineering. (1-6) Here we show how lattice wavelets arise in the context 
of  the block field renormalizat ion group ( B F R G )  as used in the analysis of 
lattice models in statistical mechanics and lattice regularized cont inuum 
field theory.(2~4) After showing the relation between lattice wavelets and the 
B F R G  we take the lattice spacing to zero and obtain  cont inuum wavelets. 
In the cont inuum, wavelets are a finite set of functions such that transla- 
tions and dilations (scalings) generate a basis for functions defined on R d. 
The functions on different scales are or thogonal .  

In typical applications of  the B F R G  one has a perturbed Gaussian 
integral and a multiscale analysis is made  by first decomposing the 
covariance into scales. We now give this decomposit ion.  To fix the setting 
and for simplicity we consider the lattice eZ a. We could also use a finite 
lattice. We define averaging operators  c~+l~QCk~ which take the average of 
a function in 12(L%Z a) over the L d points of a block centered at points in 
L k+ lez ,  i.e., 

Q f ( y )  = L -d  ~ f ( y  + x); y 6 L k + leZd 
[x~l < L k+ le/2 
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where we suppress the superscripts. We use the Riemann sum approximates 
to continuum integrals in the definition of inner products and �9 for adjoint. 
Denote by Qj the composition o f j  averaging operators irrespective of the 
domain lattice and set Qo = I. Now QTf f ~  12(L%Za), has the property 
that it is constant on Lk+JeZ a blocks in L%Z d or we say it is constant on 
L j blocks. 

If A-1 is the covariance of the Gaussian (A may be minus the 
Laplacian or some power or any nonnegative symmetric operator), then 
the decomposition induced by the BFRG is 

n - - 1  

A - l =  ~ [A-1Q,  AjQjA I_A-1Q,+IAj+IQj+I A 1] 
J = 0  

+A IQ*A,Q,A -1 (1) 

where Aj= (Qf l  ~Q*)-~ is assumed to exist and is called t he j th  effective 
action. The decomposition is trivial in the sense that it is telescopic, but the 
form of each term is not and arises from the use of the RG. Also the decay 
and smoothness of the kernels of the terms depend on the operator zJ. (7'8) 

For a decomposition of the nonsymmetric inverse Dirac operator see ref. 9. 
We give a quick derivation of (1) which is based on the factorization 

of the generating function of a Gaussian measure. First we introduce 
the BFRG. If p~II(L%Z d) then we define the RG transformation 
T: ll(LkeZ a) ~ ll(L k+ lezd) by 

Tp(tp) = f (5(~b -- Q(~) p(r De (2) 

where 

6 ( ~ -  Qr = [I 6 (0 (y ) -  Qr D~b= l-[ de(x) 
y E L K+ l ~ z d  x ~ L k ~ z  d 

and we suppress domain indices. We let T t be a composition of l transfor- 
mations. The transformation T satisfies the important normalization 
property 

f Tp(~) D~9 = f p(r De (3) 

It is convenient to write (1) as 

n 1 

A - l =  ~ MjFjM* + M,A n M,  (4) 
j = 0  
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where Mj = A -1Q*A s and E/= Af I - A f lQ*As + 1 QZJj  + 1 QAj 1. We call M s 
the jth minimizer; ~b = MjO minimizes the quadratic form 1/2(~b, A~b) sub- 
ject to the constraint Qj~b = ~b. We call Fj the j th  fluctuation covariance 
and QFj=O. We show by induction the factorization of the generating 
function 

exP[�89 U)] 

j=O 
MjFjM*J) I exp[�89 M~A2IM*J) ] 

which implies (1). Using (3), we have 

expE�89 MnA71M*j)] 

= f exp(J, Mn~b) exp[ - �89 A,~) D~/(J= 0)] 

= f D@ c~(@-Q(b)(f {exp(J, Mnr189162 Anr } Dq)/(J=O)) 

(5) 

Make the change of variables r  where mn+l= 
A21Q*A.+~, to obtain, noting that M,,rn.+~=M~+~, Qm.+l=I, and 
A.=M*AM., and that, for 0 / = 0 ,  (t/, Anm.+l~')= (0/, A .+I~)=O , 

exp[�89 M.A ,7 ~ M.J) ] 

= f {exp[(J, M . + ~ O ) -  �89 A.+IO)]} DO/(J=O)) 

x [ f  {exp(J,M, tl)exp[-l(q,A,tl)]} 6(Qtl)Dq/(J=O)] (6) 

which establishes (5) for n + 1. Note that a Lagrange multiplier calculation 
of the integral in 

FsK)] = f {exp(K, t/) exp[ - �89 Ajt/)] ) c~(Qt/) Dq/(K= O) exp[-�89 (K, 

(7) 

gives the formula for Fj. For later use we give the momentum representa- 
tion for Aj and Ms-. 

For 

Mk = A ~Q~A~: 12(LkgZ "~) --~ 12(eZ d) 
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we write 

f(z) = ~ Ma:(ZlX ) g(x)(Lkg) a 
x 

so that  

Mk(z, x ) =  (2re) - a  E f e i(p'+l')~-ip'x R(p', l')dp', 
l '  = 2rcm IP'=[ < re~ LkE 

Iml < Lk/2  

z s s Z  d 

where rn ~ Z d, 

R(p', l') = 3 (~ l(p, + l') (1 sin((p ' .  + / ~ ) / 2 )  L% 2(k),L,~(p, ) 
t k - , , = 1 sm((p~ +/~,)/2) a 

and for 

A [  ~ = QkA ~Q*: 12(L%Z a) --+ 12(L%Z d) 

we have 

h(x) = y, z ; l (x ,  x') r(x') L~ 
x '  

3~k)'L~ ' ( P ' ) = ~  sin((P"+l")/2)L%Tk �9 , , ~ ( 0 ) , ~ - l ( p , + / , )  
r = 1 L s ln ( (p .  + /~) /2 )  J 

where 

A ~ l ( x , x ' ) = ( 2 ~ )  J f .3( k),Lk~ ,(p,)eip'(x X') dp' ' 
[P'~I < re~ Lk~ 

and 

X ,  X '  E L k g z  d 

d - l ( z , z , ) = ( 2 r c ) - a f  ~(o),~ l(p) eip(~-S)dp 
I p~,[ < n/~ 

F r o m  the decompos i t ion  (1) we obta in  a decompos i t ion  of the identity 
by mult iplying on the left and right by A 1/2, i.e., 

n 1 
I=  ~ [A - : /2 'q* '~ c~ A - - l ~  2 A--1 /2 , r  :t': A Q/+lZI--1/2] 

}aaf. j J j ~ j zJ - -  aJ ~.'~ / + 1 z~ j + 1 . 

j = O  

n 1 

+ A - ' / 2 Q * A . Q . A  -u2= ~ P j + R .  (S) 
j = O  
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Now an easy calculation shows that Pj and R,, are mutually com- 
muting orthogonal projections, i.e., 

P,, ? : : / , .  �9 = Rn = Rn, R~ = R,  
(9) 

= p p:, P R. = R.P: 

Thus, a function is decomposed into scales by writing 

/ r  

f =  ~ Psf  + R . f  (10) 
j = o  

with all terms mutually orthogonal. To see the connection with wavelets, 
we find the eigenfunctions of the Pj and R,. A short calculation shows that 

fj=A I/2Q*Aju=A1/2Mju, Qu=O (11) 

is an eigenfunction of Pj and 

h,=A mQ*v=A~/ZMnA2'v (12) 

is an eigenfunction of R, .  From (11) and (12) we see that A1/% is constant 
on L:e blocks and A-  ~/2f: has average zero on L% blocks for k > j. Also, 
A1/2h, is constant on L% blocks. Furthermore, if A is taken as a positive 
power of the negative Laplacian, the smoothness of the eigenfunction f j  
increases with the power, since f j  is in the range of A - ~/a. The special case 
A = I results in Haar basis functions. 

Let us consider translations off j .  If Qu = 0 and ua is the translate of 
u by a, then f~a)=A-~/2QjAsu a is also an eigenfunction of Pj, but not 
necessarily orthogonal to fj. Now we show that f}a) is in fact the translate 
by a off j .  Letting T, be the translation operator by a, we find 

TaQ/=QsTa (13) 

for a belonging to the range lattice of Qj, so that 

f~a)= Tafj 

since Ta commutes with A and A s as seen by (13) an d  its adjoint. Thus, 
within each scale we generate eigenfunctions by the translation of eigen- 
functions. We calculate 

a b (h,,, (vo, Jn+ v ) ( f j , f j )= (ua ,  Ajua), ~ b -1 

and since A: and A n +~1 are positive, we can form an orthogonal set in each 
scale, for example, the j t h  by e~ = S~mf:  ~), where S is the matrix with 
matrix elements Sab = (U~, A:Ub). 
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What we have done up to now is to decompose a function into 
different scales and in each scale we can take the eigenfunctions to be 
translates of each other. What can we say about the relation between eigen- 
functions on different scales? In contrast to the continuum, the dilation 
of an eigenfunction to a new scale is not an eigenfunction on the new scale. 
This is due to the fact that in momentum space the operators z~-1/2, ] (the 
tilde denotes the Fourier transform) are not homogeneous functions as are 
their continuum counterparts. However, we can generate a basis for 

n - - 1  ~2j=0 Pjl2(eZd) as follows: 

1. On eZ a take L a -  1 functions u~ supported on the L block at zero 
such that Qu~--O. The fo's associated with these u~ by (11) and their 
translates by multiples of La form a basis for Polz(eZa), 

2. For  the j t h  scale dilate the above set u~ by U,  i.e., u~(y)= 
u~(y/U), y E LJ~ Z d, then form the f j  with the u~ by (11). The translates of 
these f j  by multiples of Lie then form a basis for Pjlz(gZd). 

The set of functions described above are our lattice wavelets. 
For  dimension d =  1, L = 2  these wavelets are the Lemarie func- 

tions3 m) However, for d >  1 the construction provides wavelets that are not 
tensor products of the one-dimensional wavelets. For  explicit momentum 
representations for the kernels of the operators Ak, Mk, and Fk see ref. 7. 

The above decomposition is typical for applications to lattice 
regularized quantum field theory models. In these models the RGT is 
applied until the unit scale is reached. We now relate these results to applica- 
tions of the BFRG to unit lattice models of statistical mechanics, (2'7'I~2) 
where one is interested in the long-range behavior of correlation functions. 
In this case an averaging operator, also denoted by Q, is defined on 
functions on Z d into itself, by 

Qf(y )  = L~L -d ~ f ( L y  + x), y e Z ~ 
[x~] < L/2 

The parameter ~ is taken such that the average field has the same long- 
range behavior as the original field. For  example, if A is the negative of the 
Laplacian, L ~ = L  (d-2)/2. The RGT is obtained similary to Eq. (2) but for 
densities on Z a. The previously obtained properties of the decomposition of 
A-  a, the identity, and the wavelets continue to hold (see also ref. 10 for the 
construction of wavelets in this context). Furthermore, it is shown in ref. 7 
that in the decomposition of A l(x, x ')  in Eq. (1) the j t h  term decays 
like L -j(d 2 ) e xp (_L-S  [x--x ' l ) ,  so it is roughly the contribution of the 
momentum scale L-J. Here An converges to a Gaussian fixed point A~ of 
the RGT. 
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For models which are perturbations of Gaussians, multiscale formulas 
are found in refs. 11 and 12 for the generating and correlation functions 
after the application of an RGT. Furthermore, the "orthogonality between 
scales" or wavelet structure implicit in the decomposition of Eq. (8) plays 
an important role in the simplicity of the formulas and allows for the con- 
trol of the correlation functions for some asymptotic free models. Explicitly 
at the operator level the properties MjFjM*MkFkM* = 6jkM~FkM~ and 
M*AM jFjM *  = 0, j = 0, 1 ..... n - 1, are used. These properties follow from 
PjPk= c~jkP i and PjR,, =0,  j = 0 ,  1,..., n - 1 .  In these models the density 
converges to the fixed point e x p [ - Z  ~(~b, A~b) /2]  and the long-range 
behavior of the two-point function is ZA-1. We point out that other 
commonly used decompositions of A-~ do not have the "orthogonality 
between scales" property. 

We now pass to the continuum in Eqs. (1) and (8) by taking the 
number of steps n ~ oo and the lattice spacing e ~ 0 in such a way that 
L~e = l. Writing the Qi, J = n + s, as 

1 
Q, +sf(y) - L(n +,)aea ~ eaf(y + x), y ~ L ~ +'eZ d 

Ix: d (L(n+s)e/2 

and taking the continuum limit, we define the averaging operator 
C~: L2(R a) ~ 12(LsZ a) by 

C s f ( Y ) = ~ f l x ~ l < L , / 2 f ( Y + x ) d x ,  y e L s Z  a 

so that C * g ( y + x ) =  g(y) for [x~l < L~/2, g~12(LsZd), and the limit of (1) 
becomes 

1 
A 1 2 (A-1CmAmCmA 1 

m ~ -- ov~ 

+ A 1C*AoCoA-I 

- A - 1 C ~ +  l A m +  l Cm+ l A - 1  ) 

(14) 

where in (14) A -1 is the continuum operator and A m = ( C m A  1Cm~)-i  is 
a lattice operator on 12(LmZa). We can continue telescoping the last term 
of (14) to go to the L Z  a, L2Z d .... lattices, obtaining 

A 1 ( A - 1 C ~ m A m C m A - 1 A  C m + l A m + l C m + l  
m ~ --oo 

and a decompositon of the identity as 

(15) 
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n ~ --oo 

n ~ --oo 

( d  t / 2 C * A n C n  d - 1 / 2 - A - 1 / 2 ( ~ * ~ n +  1 d n + l C n + l  A 1/2) 

P, 

where the P, are mutually commuting orthogonal projections. 
Letting T] be the translation operator by a in the continuum, we have 

c 
T a G  m = G r e T a ,  a E L m Z  a (16) 

and, as before, letting M~ = A- 1 , C,,Am, 

fm=A 1/2r~*A~m_mU =A1/2M~u, Ru=O, uel2(LmZ a) (17) 

is an eigenfunction of Pro, where R: 12(LmZ a) ~ 12(Lm+lz d) is the lattice 
averaging operator over L blocks and satisfies Cm+l =RCm. Using (16), 
we obtain that 

f(a)-- TC f a~Lm+lz a m - -  - - a d m ~  

is an eigenfunction of Pm" Furthermore, 

(f(m a), f~)) = (u., Am, ub) 

Now we consider dilations. Let D~ be the continuum dilation operator 
defined by 

D~h(x) = h(x/L k) 

and Dk the lattice dilation operator; then, by Fourier transform considera- 
tions as in ref. 8, 

D~fm =c(k, L) d 1/2C~+mAk+mDkU 

p c c c c(k, L) a constant; and thus k+mDkf,, = Dkfm, since Dkf,, , has the form 
(17) and RDku =0. In words, dilating eigenfunctions gives eigenfunctions 
on the dilated scale. 

A basis for L2(R a) is formed as follows: 

1. Take the fo's associated by (17) with L d -  1 u~'s 612(Za), Ru~--0, 
supported on the L block at zero. The translation by multiples of L 
generates PoL2(Ra). 

2. Dilating the fo'S by L k and translating by multiples of L g generates 
PkL2(Ra). 

These are the continuum wavelets. 
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in  ref. 10 these wavelets are related to the Gaussian fixed point  in the 
per turbat ion of unit lattice Gaussian models of statistical mechanics 
ment ioned previously. 

For  example, if the initial action is taken as the negative Laplacian, 
the fixed point  is 

1 A = 5(~b, ~ b ) =  lira �89 AA~O) lira l-(oL-k~2\ kW, ~ ~L k~kO)q 
k ~ c~ k ~ oo 

where t / is  the inner p roduc t  in 12(L kzd) ,  Ak is the unit lattice minimizer, 
and 

.~r x )  = L k(d- 2)/2Ak(Lkz, x) ,  z �9 L - k z d  

is the canonically scaled continuum-like minimizer of ref. 7. F r o m  
Appendix 1 of ref. 7 we see that d o ( z ,  x )  = M ; ( z ,  x) ,  z � 9  d, and z ~ ( p  ') = 
A ~ ( p ' )  in the formula for the con t inuum minimizer. 

The R G  transformat ion (2) considered up to now is the a ~ oo limit 
of the exponential  R G  transformation,  denoted Ta, defined by replacing 
the 6 function by N - l e  -a14'-Q~12, where N is a normal izat ion constant  
such that  (3) holds. (s'9) T a also induces a telescopic decomposit ion,  but  the 
terms are more  complicated than those of  (1) and (8) and the terms in 
the decomposi t ion of  I are not  projections. However,  as shown in ref. 8, 
the decay and smoothness  properties of the kernels of the terms still hold. 
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